
ScratchGo: An Integrated Approach to Playing Computer Go
Woodward H. Folsom, IV

1 Introduction

The game of Go is a conundrum in the field of arti-
ficial in- telligence. The number of rules and types of
pieces are smaller than those of chess or even checkers,
yet computer agents for Go are currently unable to reg-
ularly defeat professional players on even the smallest
board. Several aspects of Go, including the percent-
age of potential moves which are legal and very large
branching factor of the game space, give rise to this
problem.

The focus of this project was on small board Com-
puter Go, an unsolved problem since the first agent
was devised by Albert Zobrist in 1970 [1]. The ini-
tial objective was to combine tree search and machine
learning techniques to develop a platform capable of
online play against humans and other computer agents.
A secondary goal was to minimize the use of expert
knowledge in creating this program.

1.1 Go Basics

The game of Go, also known as Wei-qi in China
and Baduk in Korea, is one of the oldest board games
currently played. It is also one of the simplest games
to learn. According the the American Go Association,
chess great Edward Lasker famously noted, ”the rules
of go are so elegant, organic, and rigorously logical that
if intelligent life forms exist elsewhere in the universe,
they almost certainly play go” [2].

Go is typically played on a wooden board imprinted
with a 19 by 19 grid of lines. Two players, Black and
White, alternate placing stones on the intesections of
these lines. Adjacent stones of the same color are con-
sidered to be part of a group. If any of the stones in a
group is adjacent to an empty intersection, that group
is said to be alive. If a stone or group should be com-
pleted surrounded by enemy stones at every adjacent
intersection, that group dies and is removed from the
board. It is typically illegal for a stone to be played in a
position where it was no liberties – adjacent empty in-
tersections – unless doing so captures an enemy group.
Play continues until one player resigns or both players
pass in succession.

There are many systems of scoring Go, of which the
most widely used are Japanese and Chinese. For sim-
plicity, Chinese scoring is used here. In this system, a

player receives one point for every stone on the board1,
plus one point for every intersection of territory sur-
rounded by that player’s stones. Intersections adjacent
to both players’ stones are not counted as territory. In
addition, White receives a bonus known as komi in re-
turn for moving second. Komi is typically 5.5 – 7.5 for
a 9x9 go board (the fractional portion prevents a tie
game).

2 Related Work

Despite the challenges faced by classical approaches,
the field of computer Go has seen dramatic advances
since the use of Monte Carlo Tree Search (MCTS)
techniques to evaluate the best next move was first
proposed in 2006 [3]. MCTS is a randomized algo-
rithm which uses a large number of random action se-
lections followed by heuristically guided play to arrive
at an estimate of a potential move’s value. The most
straightforward MCTS algorithm typically referred to
as vanilla MCTS, is exceedingly simple:

Beginning wth the root node (current state), per-
form the following four steps until some resource, typ-
ically time, is exhausted:

Selection Select a node to grow, starting at the root

Growth Apply a random new action to selected node

Rollout Random play until game ends

Update Update applicable node win, visit statistics

Vanilla MCTS suffers from two major drawbacks: it
is not efficient, and is not consistent. In other words,
it is quite slow to converge on a solution, and is not
guaranteed to converge on the optimal solution.

Some researchers have partially mitigated these
weaknesses with hybrid algorithms, such as UCT-
RAVE, which forms an online generalization between
related positions, using the average outcome of each
movecombining this rapid but biased estimate of a
moves value with the slower but unbiased Monte Carlo
estimate [4]. However, even UCT-RAVE, like the basic
Monte Carlo method it is based on, can overlook an
optimal move if the random sampling is poor. An ad-
ditional criticism of Monte Carlo methods in the arena

1See Section 4.4 for a slight clarification

1

of computer Go is that they tend to play poorly when
the ideal sequence of moves, or tesuji, depends on the
order of stone placement.

ScratchGo uses a hybrid design which incorpo-
rates learning from self-play using neural networks and
TD(λ) reinforcement learning. This technique has
been successfully applied to other games, most no-
tably backgammon [5]. Gerald Tesauro at IBM Re-
search used TD learning to train the 1995 game TD-
GAMMON to play backgammon at a level on par with
the best human players in the world. This approach
was particularly innovative in that heuristics were boot-
strapped through self-play with no a priori knowledge
of game strategy. It was this feature which made TD-
learning appealing for ScratchGo, since it was antici-
pated that time constraints would prevent compiling
an elaborate library of hand-crafted heuristics.

3 Approach

3.1 Design

This project was formulated to significantly expand
on Tree Search vs. Monte Carlo in Go for Small Boards,
a 2-week project developed during the Spring 2012 AI
course taught by professors Frank Dellaert and Thad
Starner at the Georgia Institute of Technology. In
this limited scope endeavor, a classical tree-search al-
gorithm was evaluated against Monte Carlo simulation
on a small (6x6 board).

While these techniques as presented in AI: A Mod-
ern Approach Chapter 5 [4] produced the expected
results in this earlier study (alpha-beta outperformed
simple Monte Carlo in this constrained scenario), sev-
eral planned features were not implemented and are
considered a suitable starting point for this project.
These features included transposition tables (Zobrist
hashing, from [1]), a parallel implementation of Monte
Carlo search and a true implementation of UCT- RAVE
using weights to be determined experimentally. These
combined techniques could potentially allow deeper
search into the game tree than any one approach, mak-
ing this Go agent competitive on small boards (9x9 and
smaller).

A secondary objective which was considered but ul-
timately unsuccessful in the earlier study was to be
be tackled using the hybrid approach outlined above:
solving Go on the 6x6 board. While this may seem triv-
ial compared to the usual 9x9 small board, the largest
solved go board evident in the literature is in fact 5x5
[6] . This is unsurprising as there are over 400 bil-
lion legal states for a board of this size [7]. Even so,
this feat was only possible because the size of the 5x5

board eliminated many confusing life or death config-
urations, where it is unclear (even to human players)
which player controls the territory until the game is
fully played out. Consequently, many search branches
could be efficiently pruned for the 5x5 case.

3.2 Implementation: Objectives

Because this MS project was compressed into a
single semester, completion depended on methodical
progress and accurate appraisal of project milestones.
This project was expected to entail approximately 30
hours per week of research, development and testing.
In the industry, agile software development proposes
that project schedules are best kept using an itera-
tive sequence of rapid design, development and delivery
known as sprints. Consequently, the following 1-2 week
sprints were proposed:

Sprint 1 Apply for a Ranked Robot account on KGS
Go Server. Fix major deficiencies in existing game
code- base: Zobrist hashing, super-ko rule, etc. Re-
search the UCT-RAVE algorithm, in particular how
weights are determined.

Sprint 2 Implement a graphical user interface to
facilitate testing. Research methods for accelerating
move selection and placement using commodity 3D
graphics hardware.

Sprint 3 Implement offline referee functionality to
greatly in- crease the speed of testing and training.
This will also allow the application to function without
a connection to the KGS Go Server on the Internet.

Sprint 4 Implement UCT-RAVE and use ML tech-
niques to train the search parameters.

Sprint 5 Parallelize the Monte Carlo simulation
code.

Sprint 6 Tune the tree-search algorithms for speed
using [8], attempt to solve 6x6 board.

Sprint 7 Research techniques (e.g. neural networks)
to identify solved life-death problems. Integrate these
detection algorithms, attempt to solve 6x6 (or larger)
board again.

Sprint 8 Implement rudimentary fuseki (openings).
The system should be capable of learning new openings
by observing opponents rather than relying on a set
library of hand-crafted rules.

Sprint 9 Implement rudimentary joseki (corner-
play). Again, the system should discover the solutions
by evaluating the game state rather than responding
to set triggers.

Sprint 10 Evaluate the performance of the agent
during online ranked play. Analyze the capability of
the system to solve Go-like games and problems on a
variety of board sizes.

3.3 Implementation: Results

Sprint 1 The KGS Go Server allows participation by
AI agents known as Robots as well as human players
using web-based and mobile clients. Unranked players
are allowed to suggest their own approximate skill level
using the 30 kyu (novice) – 1 dan (master) ranking sys-
tem common to Go tournaments. Ranked players are
tracked over time and assigned accurate ratings based
on performance against other players, either robot or
human. A Ranked Robot account was requested from
the KGS administrators at the onset of Sprint 1. Un-
fortunately, this status was not granted by the comple-
tion of Sprint 10. Consequently, no long-term study of
ScratchGo’s strength could be undertaken.

In addition to creating several unranked accounts
to allow ScratchGo to play against other programs on
KGS, Sprint 1 consisted of fixing bugs and improving
the performance of the existing vanilla MCTS method.
Zobrist hashing was implemented to support super-ko
(repetition of a whole board pattern) detection. Re-
search into UCT-RAVE revealed that the constant bal-
ancing exploration and exploitation in the tree search
(see Sprint 8 Outcome) was tuned experimentally to
the customary value 0.4.

Finally, several days were allocated to reading Math-
ematical Go: Chilling Gets the Last Point [9] and
considering the application of surreal combinatorics to
pruning the search space. However, it seems clear that
the chilling technique, which simplifies combinatorial
analysis of loop-free games, cannot be used in most
actual Go games due to repetition of local patterns.
Since this requirement would rarely be met until near
the end of a game in any case, this interesting approach
was abandoned for ScratchGo.

Sprint 2 Implementation of a 2D user interface for
ScratchGo was easily accomplished using Java’s Swing

framework and textures freely available from Word-
press. This feature payed immediate dividends as it
made testing against opponents incapable of connect-
ing to KGS, such as GoFree for the Android tablet,
much faster. Since dynamic profiling revealed that
very little time was consumed by placement of stones
and comparison of board states (hashing accomplished
this), the notion of using graphics acceleration for move
selection was abandoned.

Figure 1. A snapshot of a game in progress against a
human opponent using ScratchGo’s Java graphical user
interface.

Sprint 3 As with the creation of a GUI during the
previous sprint, development of an offline game mode
greatly increased the speed of testing ScratchGo.

Sprint 4 Sprint 4 produced an implementation of the
UCT-RAVE algorithm due to Kocsis and Szepesvari
[3]. With extensions and parallelization (see Sprint 5,
Sprint 6), this algorithm consitutes the core tree search
used by ScratchGo. This method is related an optimal
solution to the Multi-Armed Bandit problem as formu-
lated by Auer, Cesa-Bianchi and Fischer [10].

Multi-Armed Bandit Problem Given a multitude
of slot machines (one-armed bandits) with varying pay-
offs, determine the optimum order of play such that the
regret is minimized:

ρ = Tµ∗ −
T∑

t=1

r̂t (1)

(2)

The regret ρ is the difference between the actual re-
ward received and the reward which would have been
received by playing the slot machine with the best pay-
off every turn.

UCB1 The UCB1 algorithm due to Auer et al. [10]
is optimal in that the regret grows logarithmically in
the number of trials:

X̄j +

√
2 lnn

nj
(3)

Unlike ’vanilla’ Monte Carlo, UCB1 balances explo-
ration and exploitation by adding to X̄j , the average
reward received from slot machine j, a factor based on
the number of times machine j has been tried as well
as the total number of trials.

UCT Kocsis and Szepesvari adapted UCB1 to tree
search as follows to yield UCT :

Q⊕UCT = QUCT (s, a) + c

√
log n(s)

n(s, a)
(4)

The coefficient c influences the tendency of UCT
toward exploration (high c) or exploitation (low c). It
is generally tuned experimentally to a value between
0.4 and 0.6.

UCT-RAVE Modifying the update portion of UCT
to incorporate the All-Moves-as-First (AMAF) heuris-
tic yields UCT-RAVE (Rapid Action Value Estima-
tion).

Sprint 5 One objective of ScratchGo was to leverage
modern multi-core architectures. Monte Carlo UCT
is difficult to parallelize in a simple way because any
new leaf node could impact the next iteration. Ensem-
ble MCTS is an elegant solution. This approach, also
known as Root Parallelization (RP), is due to Chaslot,
Winand and van der Herik [11]. After a number of
UCT searches are run in parallel, the values Q(i)(s, a)
for each simluation i are simply averaged:

QRP (s, a) =

∑
iQ

(i)(s, a) · n(i)(s, a)∑
i n

(i)(s, a)
(5)

While some researchers (see Fern and Lewis [?])
claim better results using RP than with a single ap-
plication of UCT using an equal number of roll-outs,
this result could not be replicated in ScratchGo.

Sprint 6 During this Sprint, incremental enhance-
ments were made to the UCT-RAVE algorithm. Un-
fortunately, experiments with hand-tuning a SMAF
(some-moves as first) heuristic did not result in a no-
ticeable improvement in game outcome. Additional
approaches researched included α-AMAF, which inter-
polates between UCT and AMAF estimates of action
values [12].

At this point, time constraints prompted reconsid-
eration of the goal of solving 6x6 Gol. According to
Tromp [7], a 6x6 go-like game would allow more than
62,567,386,502,084,877 board configurations. Even ac-
counting for reflection and rotation transpositions, and
the fact that less than half (but more than a quarter)
of these configurations would be legal under normal
rules, it would be impractical to store a look–up table
of these configurations for use in search optimization.
Since this exercise would otherwise contribute little to
a functional Go game, this idea was abandoned. It
should be noted that the largest Go-like game solved
to date is 5x5 (5 orders of magnitude smaller), and
this size allows early analysis of many configurations
due to the inability for a surrounded group to ’make
life’ in such a small space.

Sprint 7 Sprint 7 initially focused on adapting an
existing neural network library to the task of temporal
difference learning. Both the Neuroph [?] and Encog [?]
frameworks were extensively investigated for this use.
However, these Java toolkits contained many optimiza-
tions that hampered easy modification and some nec-
essary classes were closed to extension. Consequently,
an entirely new neural network package was developed
for this sprint. Emphasis was on simplicity and ease of
modiciation rather than performance, and the typical
algorithms used for training a feed-forward neural net-
work were drawn directly from chapters 1–5 of Neural
Smithing [13].

The initial test case for this work was to learn the
XOR function using a simple Multi-Layer Perceptron
with a single hidden layer. Hidden layers used the
Simoid activation function:

S(t) =
1

1 + e−t
(6)

(7)

The output neuron used the tanh activation func-
tion:

tanh(t) =
e2x − 1

e2x + 1
(8)

The essential goal of neural network training is to
minimize the difference between the learned function
and the ideal function using some error metric, such as
the normalized root-mean-squared error of the training
pattern output values :

ENRMS =

√∑p
i=1 ‖oi − ti‖

2

p
(9)

The back–propagation method [13] was used to learn
the XOR function by iterative gradient descent, where

∇E = (
δE

δw1
, · · · , δE

δwl
) (10)

The rate of change in the weight of each connection,
δwi, is determined by the gradient of the error and the
learning rate γ:

δwi = −γ∇E
δwi

for i =1, . . . , l (11)

After the basic feed-forward network and backprop-
agation training code was successfully tested on the
obligatory XOR problem (see Table 1), it was applied
to the problem of learning when it is necessary to avoid
passing in Go. The network used consisted of 3 in-
put neurons [Score, Passt, Passt−1], a hidden layer,
and one output neurons [Value]. After 10,000 games of
self-play, the network correctly learned to output a low
Value (representing the utility of passing) when losing,
and to only rarely pass when winning (see [?]).

x y XOR (ideal) XOR (output)
0 0 0 0.028
0 1 1 0.964
1 0 1 0.963
1 1 0 0.028

Table 1. Multi-layer perceptron training results.

Figure 2. The XOR network consists of 2 input neurons,
2 hidden neurons and 1 ouput. A bias node transmits a
constant output signal to both hidden neurons and the
output.

Sprint 8 Training of the PassFilter using back-
propagation was a relatively simple exercise due to the
fact that a bad choice of whether to pass leads im-
mediately to a loss on the following term. In order
the develop a more general evaluation function, the
credit assignment problem had to be confronted. This
is a particularly difficult issue in computer Go because
most stones remain on the board for the duration of
the game, and can influence win or loss dozens of turns
after being played.

The approach implemented in ScratchGo is due to
Tesauro[5]. As the name implies, TD(λ) uses a co-
efficient to control the rate at which learning occurs
due to a reward received at a future state. By varying
λ in the range [0..1], training takes on the character-
istics of backpropagation or Monte Carlo simulation,
respectively. This technique has been used to great ef-
fect in other games. It can be applied to reinforcement
learning in neural networks, as was done in Tesauro’s
world-class backgammon program TD-GAMMON.

wt+1 − wt = α(Yt+1 − Yt)
t∑

k=1

λt−k∇wYk (12)

This is known as the forward view of temporal dif-
ference learning. An alternative formulation to (12) is
the backward view in which an eligibility trace is main-
tained until a reward is eventually received. As the
name implies, the eligibility trace is defined relative to
the eligibility trace of the preceding state. Unlike the
backward view, it allows some learning to occur online,
i.e. as new game states are observed:

−→e t = λ−→e t−1 +∇−→
W
f(
−→
W, st) (13)

As with Sprint 7, a simple test case was needed to
evaluate the quality of the TD(λ) trainer. Rather than
begin with go, a test case was created for a simple 2
player game with a known optimal policy: Tic-Tac-
Toe. As expected, the MLP was able to learn a seem-
ingly optimal policy through 50,000 games of self-play
beginning with randomized connection weights.

Game Initial Trained–Trained Trained–Random
1 O Wins Tie Tie
2 O Wins Tie Win
3 X Wins Tie Win
4 O Wins Tie Win
5 Tie Tie Win
6 Tie Tie Win
7 X Wins Tie Win
8 X Wins Tie Win
9 X Wins Tie Win
10 O Wins Tie Win

Table 2. Training a Tic-Tac-Toe network.

This update function was used in a TD(λ) trainer to
supplement the batch-mode back-propagation trainer
developed during Sprint 8. As with the previous neu-
ral network trainer, learning was performed using self-
play with an ε-greedy trainer, that is, random action
selection with probability ε and action selection using
the neural network policy with probability (1− ε). Be-
cause the goal was to develop a network specialized for
Fuseki (openings), the game was played to completion
after ply 10 and the actual game result (1.0 for a win
by black, 0.0 for a win by white) was assigned to Yk.

Sprint 9

Sprint 10

4 Evaluation

4.1 Deliverables

During the course of this 4-month project, 8 of the
10 sprints were fully or partially completed. Table 3
summarizes the success of ScratchGo in meeting each
objective.

In all, roughly 78% of planned features were imple-
mented. However, the latest version of ScratchGo also
includes several useful features which were not initially
planned. For example, significant time was spent im-
plmemented an SGF game file parser to record games

Deliverable Features Completed
Sprint 1 100%
Sprint 2 100%
Sprint 3 100%
Sprint 4 75%
Sprint 5 100%
Sprint 6 25%
Sprint 7 100%
Sprint 8 100%
Sprint 9 0%
Sprint 10 n/a%
Total 78%

Table 3. Summary of ScratchGo features delivered.

for debugging. This module also allows import of game
databases for batch learning (used for the PassFilter).
This was used to learn the PassFilter, although the
TD(λ) trainer uses online learning to learn the Fusek-
iFilter network. Figure 3 shows an actual tournament
game parsed from SGF data by ScratchGo and ex-
ported to LATEXformat.

�������������������
�����
�
�
�
�
�
���
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
���
��
�
�
�
�
�
�
��
�
���
�
�
����
��
�
�
�
�
���
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���
��
��
�
�
��
��
��
�
�
�
�
�
��
�
��
�
�
�
�
��
�
��
�
�
�
�
���
����
�
�
�
�
�
�
�
��
���
�
��
���
�
�
�
��
�
�
������
�
��
��
�
�
�
�
�
���
���������
������
���������
�
�
���
���
��
��
��
��
��
�
��
�
���
��
�
���
����
��
�
�
�
��
���
��
�
�
�
�
�
��
�
�
��������
��
�
�
�
�
��������������
�������������������	

Figure 3. A snapshot of a game in progress.

Furthermore, as noted in Section 3.3, the necessity of
writing all new neural network modules caused sprint 8
to consume much of the schedule allocated for Sprint 9
as well. However, the end result was applied to learning
when to pass from self-play. ScratchGo is thus capable
in principal of learning ’killer move’ heuristics from self-
play. Because ScratchGo ’boot-straps’ in this manner,
the platform could easily be adapted to other games
non-game search tasks.

Finally, Sprint 10 was assigned a result of ”n/a” be-

cause the author was unable to obtain a ”ranked robot”
account on the KGS Go Server. The site administra-
tors had not yet responded to requests for this account
by the time ScratchGo was completed.

4.2 Search Algorithm Evaluation

The core tree search functionality was implemented
beginning with bug fixes to existing code (Policies 1–
3) and proceeding through iterative enhancements to
Monte Carlo Tree Search (Policies 4–6), resulting in a
hybrid solution which combined parallel UCT-RAVE
with rollout guided by policies trained using TD(λ)
reinforcement learning. Table 4 lists the results of a
round-robin tournament in which each Policy was pit-
ted itself and every other algorithm in a 10-game match
(5 as Black and 5 as White).

Policy Wins vs.
(As Black) ↓ 1 2 3 4 5 6 7
1) Random 40% 100% 0% 0% % 0% 0%
2) Alpha-Beta 20% 100% 0% 0% 0% 0% 0%
3) UCT 100% 80% 20% 0% 0% 0% 0%
4) UCT-RAVE 100% 60% 80% 80% 40% 100% 100%
5) UCT-SMAF 100% 80% 80% 80% 40% 80% 100%
6) RootParallel 100% 100% 100% 100% 100% 60% 100%
7) RP+Nnet 100% 60% 80% 0% 0% 20% 40%

Table 4. Results of round-robin tournament

4.3 ScratchGo vs. GoFree

GoFree is a popular Android version of Go by com-
mercial developer AI Factory. It was picked for com-
parison to ScratchGo because of the low cost and rel-
ative weakness as compared to GnuGo. As shown in
Table 5, it was easily beaten by ScratchGo on the easi-
est difficulty settings (1-2 out of 10) but quickly began
to encounter the same scoring and passing issues which
proved apparent against GnuGo, as discussed in Sec-
tion 4.4. It should also be noted that only a handful
of games were played at each difficulty level since these
tests could not be automated - ScratchGo’s moves were
played manually against GoFree running on an Android
tablet.

Level Wins vs. GoFree (Android)
1 100%
2 100%
3 50%
4+ ??%

Table 5. Summary of performance vs. GoFree.

4.4 ScratchGo vs. GnuGo

Despite the solid performance of the Root-Parallel
UCT-RAVE implementation against simpler tree
search algorithms and novice opponents, ScratchGo
was completely unable to beat GnuGo on any diffi-
culty level (GnuGo has many settings which impact
performance, the most obvious of which governs search
depth). This is relatively unsurprising since GnuGo
incorporates a large large number of heuristics includ-
ing fuseki, joseki, life-and-death problems, false eye
shapes, snap-backs and so on. As the performance of
ScratchGo improved, it became apparent that a ma-
jor issue lies in the way ScratchGo scores the terminal
game states. While GnuGo considers ’dead’ stones as
territory owned by the opponent, ScratchGo has no
concept of dead shapes as such, and thus these stones
count as points unless actually captured by the other
player. This permits the possibility that ScratchGo will
mistakenly score an outcome as a win when in fact it is
a loss due to dead stones in enemy territory, as shown
in Figure 4.

Figure 4. GnuGo (Black) wins by 5.5, but ScratchGo cal-
culates a 14.5-point win by White.

Future versions of ScratchGo will incorporate Ben-
son’s algorithm [14] for determining whether any stones
should be removed from the board prior to scoring a
terminal states. This correction will be aided by ad-
ditional changes to board state data structures as de-
tailed in Section 5.

4.5 ScratchGo vs. Humans

Due to the lack of access to a ranked robot ac-
count on the KGS go server, it it impossible to ob-
jectively assess the performance of ScratchGo against
human players. However, humans often entered the
KGS go server game room when ScratchGo was run
against various computer agents and occasionally man-
aged to connect to the game before the intended op-
ponent could be launched. Subjectively, ScratchGo of-
ten fared well again human novices. For example, the
following outcome resulted when a human player con-
nected to ScratchGo running in RootParallel configu-
ration (see Figure 5).

Figure 5. The human player (White) resigned when the
capture of a large group of white stones at the bottom
effectively ended the game.

5 Discussion

The latest iteration of ScratchGo a persistent on-
line agent capable of playing Computer Go against hu-
man and AI opponents on the KGS Go Server. As the
name implies, it is capable of learning to play go ’from
scratch’, i.e. by discovering some heuristics through
self play and learning others through experience.

However, it is clear that substantial work remains
for ScratchGo in order to reach parity with established
computer Go agents. This is hardly surprising, since
as Martin Müller noted in 2002, many competitive Go
programs are the product of 5-10 person-years of effort
and include dozens of modules governing heuristics for
strong play [15].

Future Work

Work in at least three areas would help to overcome
the notable deficiences of ScratchGo versus experienced
opponents.

Game state representation As noted in Section 4,
rollout efficiency is greatly hampered by simplistic
recursive evaluation of group liberties. Dynamic
profiling using the EJ-Technologies JProfiler tool
revealed that 40% of all time consumed by the ac-
tion evaluation function was used for recursive lib-
erty calculation. Replacing the current board rep-
resentation and liberty calculation method with
a more efficient model which directly represents
groups of stones and keeps a running total of liber-
ties as new stones are added would greatly increase
the effective tree search depth. This approach is
used by GnuGo [16] and numerous other programs
based on GnuGo.

Neural Network Encoding While the PassFilter
successfully uses backpropagation to learn when
passing is an immediate killer (or losing) move, the
relatively poor performance of the JosekiFilter in-
dicates that a strong evaluation function was not
learned using a raw board encoding. As with Tic-
Tac-Toe, it may be the case that a better choice
of input features would lead to better convergence
using a less complex network.

Heuristics As shown by online play against GnuGo,
ScratchGo suffers greatly from a lack of ex-
pert knowledge in determining moves which build
strong shapes. Human players can accomplish
similarly strong play by drawing on a repertoire
of strong as weak shapes such as the bamboo joint
(Fig. 6) and the empty triangle (Fig. 7). It would
be straightforward to add an additional Neural-
NetworkFilter to ScratchGo with evaluates the im-
mediate neighboard of a potential action and gen-
erates an output corresponding to the strength of
the shape. A library such shapres suitable for veri-
fying the learned evaluation function can be found
in any introductory Go text, such as So You Wan
to Play Go? by Johnathan Hop [17].

�����
�
��
��
�
��
��
�����

Figure 6. The bamboo joint is easily defended.

����
�
�
��
�
���
����

Figure 7. The empty triangle is inefficient.

Acknowledgements I would like to acknowledge
the assistance of my project advisor, Dr. Frank Del-
laert, for his encouragement and constructive criticism
over the course of this project.

References

[1] A. Zobrist. A new hashing method with applica-
tion for game playing. Computer Science Depart-
ment Technical Report, 88, 1970.

[2] J. Simmons. Notable quotes about go.
http://www.usgo.org/notable-quotes-about-go,
2012. [Online; accessed 6-December-2012].

[3] L. Kocsis and C. Szepesvari. A new hashing
method with application for game playing. Com-
puter and Automation Research Institute of the
Hungarian Academy of Sciences, 2006.

[4] S. Russel and P. Norvig. Artificial Intelligence;
A Modern Approach. Prentice Hall, third edition,
2010.

[5] G. Tesauro. Temporal difference learning and td-
gammon. Communications of the ACM, 38:58–68,
1995.

[6] Erik C. D. van der Werf, H. Jaap Van Den Herik,
and Jos W. H. M. Uiterwijk. Solving go on small
boards. International Computer Games Associa-
tion Journal, 26:10–7, 2003.

[7] Tromp and Farnebäck. Count-
ing legal positions in go.
http://homepages.cwi.nl/˜tromp/go/gostate.ps/,
2009. [Online; accessed 30-January-2012].

[8] M. Littman. A new way to search game trees.
Communications of the ACM, 2012.

[9] E. Berlekamp and D. Wolfe. Mathematical Go;
Chilling Gets the Last Point. A K Peters Ltd.,
1994.

[10] Cesa-Bianchi N. Freund Y. Auer, P. and
R. Schapire. The nonstochastic multiarmed bandit
problem. SIAM Journal on Scientific Computing,
2002.

[11] Winands-M. Chaslot, G. and J. van den Herik.
Parallel monte-carlo tree search. Sixth Inter-
national Conference on Computers and Games,
2008.

[12] D. Helmbold and A. Parker-Wood. All–
moves–as–first heuristics in monte–carlo go.
http://users.soe.ucsc.edu/ dph/mypubs/ AMAF-
paperWithRef.pdf, 2012. [Online; accessed 6-
December-2012].

[13] R. Reed and R. Marks. Neural Smithing. The MIT
Press, 1999.

[14] D. Benson. Life in the game of go. Information
Sciences, 10:17–29, 1976.

[15] M. Müller. Computer go. Artificial Intelligence,
134:145–179, 2002.

[16] D. Bump. Gnu go documentation.
http://homepages.cwi.nl/˜tromp/go/gostate.ps/,
2009. [Online; accessed 30-January-2012].

[17] J. Hop. So You Want to Play Go?, volume 1.
Sunday Go Publications, 2008.

