
Predicting Stock Trends Using Natural Language Processing of Headlines
Team 11

1 Introduction

Do the headlines of news articles influence stock prices?
Many people are very interested in the answer to this ques-
tion and related questions because the money that can be
made in the stock market. Determining the correlation
between news headlines and stock prices would have a big
impact on society. Many people depend on the successful
investment of stocks for their financial future and knowing
how stock prices will react to certain news headlines could
greatly increase investment income.

We examine both the news headlines and the stock his-
tory relating to America’s top 50 largest companies for a
15-week time period (1/1/2012 to 4/14/2012). The goal
is to determine if a given headline will cause a stock to
rise, fall, or remain steady during the trading day after the
headline is released.

2 Related Work

Hidden Markov Models have a long history of applica-
tion in the area of text classification, both in academic lit-
erature e.g. AI: A Modern Approach by Russel and Norvig
[5] as well as more detailed treatments including “Text Cat-
egorization using N-grams and HMMs” by Mathew [3]. As
presented in “Text Mining Systems for Predicting the Mar-
ket Response to News” [4], prototype systems in this arena
often use n-gram language models and Näıve Bayes or SVM
classifiers to predict market responses over a time frame of
minutes or hours.

We intended to focus more specifically on the applica-
tion of HMMs and N-gram language modeling for clas-
sification of news headlines as presented by Hassan and
Nath in “Stock Market Forecasting Using Hidden Markov
Model: A New Approach” [2]. This work treats the previ-
ous day’s closing price as the observed variable and predicts
the following day’s closing price. We sought to improve on
the performance of such systems (typically 40-45% vs 33%
with random guessing as presented in [4]) by instead us-
ing the tone of news headlines as emitted variables in our
HMM.

3 Approach

3.1 Language Model

The first step in the implementation of this project was
to obtain both news headlines and historic stock price data
for the companies of interest for the given time frame. This
information was gathered from the Yahoo Finance website,
using Yahoo’s URL syntax, and imported into a relational
database.

It was impossible to gather data from the period origi-
nally planned since Yahoo does not provide historical head-

line data to the general public prior to about November
2011 as of the time this project was implemented. Con-
sequently, data was gathered for the 15-week time period
from roughly 1/1/2012 through 4/14/2012. In addition,
version 1 of the Yahoo News REST API was deprecated
in April 2011. Data import was eventually accomplished
by issuing queries in Yahoo Query Language (YQL) via
the current Yahoo News REST API using Java, extract-
ing the relevant text using XPath, and finally exporting the
data to a MySQL database for mining. Access to historical
stock data is provided by simple HTTP interface, allowing
this data to be retrieved using wget and a relatively simple
bash shell script.

The headlines were then sorted at random into two data
sets on a per-headline basis: training (60%) and validation
(40%). The training set was used to develop the n-gram
models and train the headline classifier. The evaluation
data set was reserved for 5-fold random sub-select valida-
tion (see section 4).

3.2 Classifier

The classifier was intended to be a first-order HMM
with hidden states consisting of the state of the relevant
company, discretized into five different values ranging from
strongest to weakest. HMM are thought to be a suitable
method for this problem because it is assumed that both
news headlines and stock prices are a reflection of the con-
dition of a company. Therefore, this condition is the hid-
den state and the headlines and the stock prices are the
observed emissions for an HMM. Moreover, it seems to be
a valid assumption that the condition of a company can be
assumed to only depend on its condition in the previous
time period (i.e. first-order Markov assumption). Unfortu-
nately, the expectation-maximization (EM) algorithm used
to learn the transition probabilities and emission probabili-
ties for the HMM did not converge for the several thousand
emitted n-grams and stock price changes after running the
algorithm for eight hours. Our implementation of the EM
algorithm for solving HMMs was not optimized for such a
large number of variables. The approach of using an HMM
had to be abandoned in favor of an approach that learns
weighted percent price changes for each headline n-gram.
This learning weights approach assumes each n-gram has
some affect on the company’s stock price. The amount of
this affect is captured in the weights, which are learned. As
shown in the following section, this strategy was nonethe-
less a distinct improvement verse random guessing.

To learn the n-gram weights a sparse binary m× n ma-
trix, A, is constructed for both the training and validation
data. There is a row for every unique n-gram (m = 367513)
and a column for each headline (training n = 4958, test-
ing n = 2479). Each element of the matrix specifies which

1



n-grams are in each headline. In addition, for a given head-
line about a company there is a stock price change (as a
percentage) for that company on the following trading day.
For all the n-grams in the training data this percent price
change is averaged across all headlines and stored in an
m×1 vector, B. For both the training and validation data
the true percent stock price changes for the following trad-
ing data are stored in an n× 1 vector, C. In addition, the
number of n-grams in each headline is stored in an n × n
diagonal matrix, D. The weighting matrix that we solve
for is an m×m diagonal matrix, W , such that

AT
trainWBtrain = CtrainDtrain. (1)

Obviously, (1) is underdetermined because there are m
weights to learn and only n samples (m > n) for learn-
ing. Thus, W is solved for using a least squares regression
fitting. Another words,

W = argmin
W
‖AT

trainWBtrain − CtrainDtrain‖2. (2)

To actually compute W a Moore-Penrose pseudoinverse
of Atrain and Btrain are calculate (A+ and B+, respec-
tively) and multiplied to CtrainDtrain. This is gives a least
squares estimate of W . Thus,

W = A+CtrainDtrainB
+. (3)

4 Evaluation

4.1 Language Model

The language model used to train the classifier consisted
of a set of unigram, bigram and trigram frequencies for
each dataset, along with average stock price trends for all
headlines in which each n-gram appears. The following
tables are an excerpt of the most positively and negatively
weighted bigrams for Dataset #2.

Table 1: Trigram Model - Falling Stock Prices

N-gram Count Avg % Price Change
freddie mac supported 1 -12.5000

puzzled over derivatives 1 -12.5000
supported industry with 1 -12.5000
<unk> holding back 1 -9.6774

to <unk> foreclosures 1 -9.0909

Note that the column of counts in the n-gram table
presented above gives the number of occurences in unique
headlines, not n-gram frequency in the corpus as a whole.
This was done to avoid skewing the n-gram/price correla-
tion when a particular headline is published multiple times.
Consequently, it is unsuprisingly that many trigrams ap-
pear in only one headline.

In addition, each set of n-gram models was used to ana-
lyze the perplexity of the validation dataset corresponding
to each training dataset. As defined in AI: A Modern Ap-
proach [5], perplexity is calculated as

Table 2: Dataset #2 Trigrams - Rising Stock Prices

N-gram Count Avg % Price Change
instinct to win 1 25.0000

obama proposes broader 2 25.0000
of housing assistance 3 25.0000

to broaden reach 3 25.0000
your next <unk> 1 25.0000

Perplexity(C1:N ) = P (C1:N )
1
N (4)

The following perplexity measurements would prove in-
sightful when evaluating the results of the classifier (see
5).

Table 3: Validation Dataset Model Perplexity

Perplexity
N-grams 1-Gram 2-Gram 3-Gram

Dataset 1 525424 421.1 29.3 7.9
Dataset 2 523227 422.3 29.3 7.8
Dataset 3 521141 422.5 29.0 7.8
Dataset 4 522396 420.5 29.0 7.8
Dataset 5 521497 422.3 29.2 7.9
Average 522373 421.7 29.1 7.9

4.2 Classifier

To evaluate the performance of the classifier, the predi-
cated stock price changes, Ĉtest, were estimated and com-
pared against the true changes, Ctest, from the validation
dataset. To do this stock price changes were categorized
into three classes: “short”, “steady”, or “long”. If a stock
price fell by more than 0.25% then it is a “short” stock. If
a stock price rose by more than 0.25% then it is a “long”
stock. Lastly, if the stock stayed within -0.25% and 0.25%
it is a “steady” stock. These thresholds were chosen to give
approximately equal number of samples in each category.
To determine the class of the validation data predicted
stock prices changes were calculated as

Ĉtest = AT
testWBtrainD

−1
train, (5)

where W is the weights learned from the training data.
The results of all three n-gram classification models for

all 50 companies were aggregate into a single confusion
matrix shown in Figures 1 and 2. The training and test-
ing process of the three n-gram classification model takes
several hours to run. Due to time constraints we were not
able to run N-fold cross-validation on 3-gram classification
model. However, we were able to do it for just the 1-gram
classification model because this ran fairly quickly. These
results are summarized in Table 4.

5 Discussion

It is impossible to accurately compare these results with
Fung et. al [1] for several important reasons. First, we were



Table 4: Mean and standard deviation for percent correct
classification using 5-fold cross-validation on 1-gram data.

Short Steady Long

Mean 58.9% 38.4% 64.5%
Standard Deviation 1.6% 0.7% 1.5%

Figure 1: Confusion matrix of training data.

Figure 2: Confusion matrix of validation data.

unable to use headlines from the same time period since,
as noted previously, Yahoo News no longer provides these
headlines. Second, our study evaluates only the effective-
ness of the classifier, whereas Fung et. al also evaluated
an automated trading system based on SVM and Näıve
Bayes classifiers. Although it is possible that the excellent
performance of the classifier was a statistical outlier given
the small number of cross-validation runs, we initially sus-
pected over-training of the n-gram models. Table 3 shows
the perplexity of the validation data for 1, 2 and 3-gram
models trained of 5 randomly selected subsets of headline

data.
As described in [5], perplexity is in essence a measure-

ment of the branching factor of the language model. A 1
in 8 chance of picking the next trigram in a sentence given
a predecessor n-gram is clearly an over-specified model for
most languages. We attribute this result to substantial
redundancy in the dataset - although headlines were ran-
domly assigned to training and validation corpora, some
headlines were repeated, with minor variations, more than
a dozen times in Yahoo News over a period of days. Sec-
ond, given the space constraints of a news headline, the
sentences are often shorter and the vocabulary condensed
as compared to prose or spoken English. These factors
likely reduce the variability in the language studied here.

An unexpected pitfall of this algorithm’s design was the
substantial time necessary to generate the sparse matrix of
headline/n-gram counts prior to training the classifier. The
language model/classifier integration could be improved by
simultaneously generating the headline/n-gram sparse ma-
trix while building the n-gram language model, instead of
repeating the process of parsing n-grams from the head-
lines during the classifier stage of the algorithm. We did
not have time to experiment with this refinement, choos-
ing instead to perform random subselect validation of the
classifier built using the unigram model.

Using principle component analysis (PCA) or linear dis-
criminate analysis (LDA) are a couple other approaches
that might have been appropriate for this problem. This
is because essentially we are trying to classify n-grams into
one of the three (i.e. “short”, “steady, “long”). It has been
shown that PCA and LDA can perform well with this type
of classification problem.

These caveats aside, it is clear that the classifier de-
veloped for this project dramatically outperforms random
guessing. This type of tool could be of great use to a stock
trader because it takes only seconds to highlight the most
influential positive and negative news stories among thou-
sands.

References

[1] Xu J. Fung, P. and W. Lam. Stock prediction: Integrating text
mining approach using real-time news. Proceedings of the 2003
IEEE International Conference on Computational Intelligence
for Financial Engineering, pages 395 – 402, 2003.

[2] M.R. Hassan and B Nath. Stock market forecasting using hid-
den Markov model: a new approach. Proceedings of the 2005
5th International Conference on Intelligent Systems Design and
Applications, 2005.

[3] T. Mathew. Text Categorization us-
ing N-grams and Hidden-Markov-Models.
http://www.slideshare.net/thomas a mathew/text-
categorization-using-ngrams-and-hiddenmarkovmodels, 2006.
[Online; accessed 2-Apr-2012].

[4] M. Mittermayer and G. Knolmayer. Text Mining Systems for Pre-
dicting Market Response to News. IADIS European Conference
on Data Mining, 2007.

[5] S. Russel and P. Norvig. Artificial Intelligence; A Modern Ap-
proach. Prentice Hall, third edition, 2010.


