
Tree Search vs. Monte-Carlo in Go for Small Boards

Team 1

Introduction

The game of Go is a conundrum in the field of

artificial intelligence. The number of rules and

types of pieces are smaller than those of chess or

even checkers, games which have both seen the

successful application of various AI tree search,

pruning and heuristic techniques. However,

computer agents for Go are currently unable to

compete with strong amateur players on the full-

sized board or regularly defeat professional

players on even the smallest board. This is

because several aspects of Go make traditional

tree search techniques impracticable for Go.

These elements include the huge branching

factor of the board, the percentage of potential

moves which are legal and the non-monotonic

count of pieces on the board.

We chose to focus on this problem as it has

remained unsolved since the first computer Go

agent was devised by Albert Zobrist in 1970 [1].

In particular, we focus on solving games on

small sized boards, where the branching factor is

more manageable. In this paper, we develop a

tree search algorithm to play go, which we test

against the state-of-the-art Monte-Carlo

algorithms.

Related Work

Despite the challenges faced by classical

approaches, the field of computer Go has seen

dramatic advances since the use of Monte-Carlo

techniques to evaluate the best next move was

first proposed in 2006 [2].

This approach for computer Go has several

weaknesses, however. For example, it is always

possible in a Monte-Carlo simulation, which

relies on random sampling, that a clear best

move is simply not contemplated. It follows

from this that these agents can fail to pick the

best sequence of play especially when the order

of moves is important, which is quite often the

case in Go. Furthermore, each position is

represented individually, and Monte-Carlo

agents make no attempt to represent relations

between related positions. This means that these

approaches are entirely depended on a random

sampling to explore the gamespace.

Some researchers have partially mitigated these

weaknesses with hybrid algorithms, such as

UCT-RAVE, which “forms an online

generalization between related positions, using

the average outcome of each move…combining

this rapid but biased estimate of a move’s value

with the slower but unbiased Monte-Carlo

estimate” [3]. However, even UCT-RAVE, like

the basic Monte-Carlo method it is based on, is

not exhaustive and can be shown to overlook an

optimal play if the random sampling is poor.

Approach

We use mature algorithms to develop four

autonomous Go playing agents and pit them

against each other using the online match

making service “KGS Go.” This service allows

people from around the world to play Go against

one another over the internet. Our players log

onto the Go server with a screen name just like a

person would, enter a game, and start playing.

(As an aside, this could be interesting to set up

as a Turing test, since the server provides a

human opponent no indication that he or she is

playing against a computer.) We test the tree-

search algorithm’s effectiveness versus Monte-

Carlo by having them play a series of 10 games

against one another on 7 by 7 board.

The four players are outlined below:

1) Random: This player makes the first legal

move it can find at random. It was developed as

an incremental step towards a more

sophisticated player, but proved to be an

interesting sparing-partner simply because it is

non-deterministic and never plays the same

game twice. Two heuristic tree-search

algorithms playing against each other will make

identical moves every game.

2) Minimax: This player uses simple adversarial

planning as described in the textbook [4]. Every

turn, the player builds an exhaustive tree of

potential moves and the opponent’s potential

replies, up to a certain preset “look-ahead

depth,” and then selects the move leading to the

maximum-value leaf node. This player relies

heavily on an evaluation function to determine

the relative value of different plays. We chose to

evaluate the board as the difference in scores

each player would earn if the game ended

immediately using Chinese scoring, as shown

below.

Value = 378 + BlackScore – WhiteScore – 2*komi

[Eq. 1]

BlackScore and WhiteScore are the total number

of stones played, plus the territory controlled by

the players. This player is able to play

intelligently, but is quite slow since the tree’s

branching factor is absurdly large (up to

boardSize
2
). We were not able to search deeper

than three-moves into the future, primarily due

to speed constraints.

3) Alpha-Beta: This player is identical to the

minimax player in terms of overall strategy, but

attempts to search deeper by pruning off

branches that are guaranteed not to lead to a

high-value leaf node. This is done by keeping

track of the current minimum and maximum

values encountered during the search so far and

not searching any sub-trees which are dominated

by already searched space. This allows the

algorithm to search deeper than simple minimax,

and search faster. We set ours to 6 plies.

4) Monte-Carlo: This is the algorithm currently

used by state-of-the-art computer Go players [2],

despite being deceptively simplistic. It makes X

random moves at Y levels of recursion and then

selects the “best” one according to the value

function above [Equation 1]. We tried many

values for the X and Y parameters before

settling on 3 recursive plays and 10 plays per

level. This algorithm is very fast, making it

appealing for commercial application.

Evaluation

We focused on the matches between the Alpha-

Beta player and the Monte-Carlo player. This is

because minimax is strictly worse than Alpha-

Beta since it is slower, and the random opponent

did not win any games, unsurprisingly.

Qualitatively, we found that Alpha-Beta will

make tactically solid defensive formations,

visible as the diamond shapes in the upper

portion of this screenshot. Monte-Carlo tends to

explore more of the board and is quicker to play

the center, but fails to develop solid defensive

structures.

Quantitatively, we show the results of our ten

game series below.

Game

Number

Monte

Carlo

Score

Alpha

Beta

Score

Starting

Player

1 20 29 AB

2 5 37 MC

3 15 34 MC

4 18 29 AB

5 14 35 AB

6 17 30 MC

7 0 49 AB

8 10 38 MC

9 14 35 MC

10 13 36 AB

Table 1: Monte-Carlo vs Alpha-Beta

Note that Alpha-Beta won every single game,

regardless of playing first or second. This

supports our hypothesis that tree-search

strategies will outperform the state-of-the-art

Monte-Carlo on small boards.

There is another interesting metric that isn’t

contained in the table – the average amount of

time it takes each algorithm to make a move.

This was impossible to quantify given our

experimental setup, since we rely on an internet

based client-server program to host the game

and provide rules enforcement, and therefore our

speed is affected by a number of factors

including internet latency and the amount of

other people using the server at the same time.

However, it is clear that Alpha-Beta is much

faster than basic minimax, and Monte-Carlo is

faster than both of them. We speculate that

Monte-Carlo’s speed is the reason it is so

popular in commercial applications.

As a point of interest, we also perform favorably

against amateur human opponents, but we omit

the games played against internet strangers in

this table, since we cannot be sure which policy

they are using.

Discussion

The experimental evidence we collected

supports our hypothesis that tree-search methods

would beat Monte-Carlo in a game of Go played

on a small (7x7) board. While we didn’t develop

any particular novel algorithms for this project,

we were able to implement several different

strategies and verify their relative merits. For

example, Alpha-Beta’s 6 ply look ahead gives it

an enormous advantage in the late game where a

single move can change the game dramatically.

It is also more likely to make plays that will lead

to the capture of an opponent’s stone, and more

defensive in protecting its own stones. Monte-

Carlo, on the other hand, is more likely to play

the center of the board, and makes its moves

more quickly.

We also learned the importance of a good

heuristic function for pruning the tree-search. A

good heuristic can save a lot of time, especially

in the beginning of the game when most moves

are roughly equivalent score-wise. The heuristic

also heavily impacts the branching factor, as an

Alpha-Beta tree with an optimal heuristic has a

branching factor of sqrt(boardSize) and similar

tree with a very poor heuristic has a branching

factor of boardSize. The average case for a

random heuristic is ¾ boardSize. The heuristic

used as the value function affects the number of

states explored dramatically.

For this reason, developing a “better” value

function would be an excellent topic for future

work. This may allow the autonomous agents to

play on larger boards as well. At the present, the

largest solved Go board we were able to verify

in the literature is only 5x5, which has over 400

billion legal states. In this respect, the fact that

our agent was able to play reliably well on a 7x7

board is already a significant contribution. (All

autonomous Go playing programs on larger

boards are forced to use Monte-Carlo.)

However, we believe that tree-search could be

possible even on these large boards with the

right heuristic.

Unfortunately, we underestimated the amount of

scaffolding necessary to connect one agent to

another online and we ran out of time before we

could pursue this direction. Even so, preliminary

results suggest that tree-search is more than

capable for competing on small boards. In

retrospect, we would have leaned more on

premade tools so that we can get straight to the

interesting stuff.

References

[1] Zobrist, A. A New Hashing Method with Application for Game

Playing. Technical Report #88, Computer Science Department,

The University of Wisconsin, Madison: 1970.

[2] L. Kocsis and C. Szepesvari. Bandit based Monte-Carlo

Planning. Computer and Automation Research Institute of the
Hungarian Academy of Sciences, Budapest, Hungary: 2006.

[3] Gelly, S., and Silver, D. Combining online and offline learning
in UCT. In 17th International Conference on Machine Learning,

273–280. 2007.

[4] Russel, S. and Norvig, P. Artificial Intelligence: A Modern

Approach, Third ed. New York: Prentice Hall, 2010.

