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Introduction 
 
The game of Go is a conundrum in the field of 

artificial intelligence.  The number of rules and 

types of pieces are smaller than those of chess or 

even checkers, games which have both seen the 

successful application of various AI tree search, 

pruning and heuristic techniques.  However, 

computer agents for Go are currently unable to 

compete with strong amateur players on the full-

sized board or regularly defeat professional 

players on even the smallest board. This is 

because several aspects of Go make traditional 

tree search techniques impracticable for Go. 

These elements include the huge branching 

factor of the board, the percentage of potential 

moves which are legal and the non-monotonic 

count of pieces on the board. 

 

We chose to focus on this problem as it has 

remained unsolved since the first computer Go 

agent was devised by Albert Zobrist in 1970 [1]. 

In particular, we focus on solving games on 

small sized boards, where the branching factor is 

more manageable. In this paper, we develop a 

tree search algorithm to play go, which we test 

against the state-of-the-art Monte-Carlo 

algorithms. 

 

Related Work 
 
Despite the challenges faced by classical 

approaches, the field of computer Go has seen 

dramatic advances since the use of Monte-Carlo 

techniques to evaluate the best next move was 

first proposed in 2006 [2].   

 

This approach for computer Go has several 

weaknesses, however.  For example, it is always 

possible in a Monte-Carlo simulation, which 

relies on random sampling, that a clear best 

move is simply not contemplated.  It follows 

from this that these agents can fail to pick the 

best sequence of play especially when the order 

of moves is important, which is quite often the 

case in Go. Furthermore, each position is 

represented individually, and Monte-Carlo 

agents make no attempt to represent relations 

between related positions. This means that these 

approaches are entirely depended on a random 

sampling to explore the gamespace.  

 

Some researchers have partially mitigated these 

weaknesses with hybrid algorithms, such as 

UCT-RAVE, which “forms an online 

generalization between related positions, using 

the average outcome of each move…combining 

this rapid but biased estimate of a move’s value 

with the slower but unbiased Monte-Carlo 

estimate” [3]. However, even UCT-RAVE, like 

the basic Monte-Carlo method it is based on, is 

not exhaustive and can be shown to overlook an 

optimal play if the random sampling is poor. 

 

Approach 
 

We use mature algorithms to develop four 

autonomous Go playing agents and pit them 

against each other using the online match 

making service “KGS Go.” This service allows 

people from around the world to play Go against 

one another over the internet. Our players log 

onto the Go server with a screen name just like a 

person would, enter a game, and start playing. 

(As an aside, this could be interesting to set up 

as a Turing test, since the server provides a 

human opponent no indication that he or she is 

playing against a computer.) We test the tree-

search algorithm’s effectiveness versus Monte-

Carlo by having them play a series of 10 games 

against one another on 7 by 7 board. 

 

The four players are outlined below: 

 

1) Random: This player makes the first legal 

move it can find at random. It was developed as 

an incremental step towards a more 

sophisticated player, but proved to be an 

interesting sparing-partner simply because it is 

non-deterministic and never plays the same 



game twice. Two heuristic tree-search 

algorithms playing against each other will make 

identical moves every game. 

 

2) Minimax: This player uses simple adversarial 

planning as described in the textbook [4]. Every 

turn, the player builds an exhaustive tree of 

potential moves and the opponent’s potential 

replies, up to a certain preset “look-ahead 

depth,” and then selects the move leading to the 

maximum-value leaf node. This player relies 

heavily on an evaluation function to determine 

the relative value of different plays. We chose to 

evaluate the board as the difference in scores 

each player would earn if the game ended 

immediately using Chinese scoring, as shown 

below. 

 
Value = 378 + BlackScore – WhiteScore – 2*komi 

[Eq. 1] 

 

BlackScore and WhiteScore are the total number 

of stones played, plus the territory controlled by 

the players. This player is able to play 

intelligently, but is quite slow since the tree’s 

branching factor is absurdly large (up to 

boardSize
2
). We were not able to search deeper 

than three-moves into the future, primarily due 

to speed constraints. 

 

3) Alpha-Beta: This player is identical to the 

minimax player in terms of overall strategy, but 

attempts to search deeper by pruning off 

branches that are guaranteed not to lead to a 

high-value leaf node. This is done by keeping 

track of the current minimum and maximum 

values encountered during the search so far and 

not searching any sub-trees which are dominated 

by already searched space. This allows the 

algorithm to search deeper than simple minimax, 

and search faster. We set ours to 6 plies. 

  

4) Monte-Carlo: This is the algorithm currently 

used by state-of-the-art computer Go players [2], 

despite being deceptively simplistic. It makes X 

random moves at Y levels of recursion and then 

selects the “best” one according to the value 

function above [Equation 1]. We tried many 

values for the X and Y parameters before 

settling on 3 recursive plays and 10 plays per 

level. This algorithm is very fast, making it 

appealing for commercial application.  

 

Evaluation 
 
We focused on the matches between the Alpha-

Beta player and the Monte-Carlo player. This is 

because minimax is strictly worse than Alpha-

Beta since it is slower, and the random opponent 

did not win any games, unsurprisingly.  

 

Qualitatively, we found that Alpha-Beta will 

make tactically solid defensive formations, 

visible as the diamond shapes in the upper 

portion of this screenshot. Monte-Carlo tends to 

explore more of the board and is quicker to play 

the center, but fails to develop solid defensive 

structures.  

 

 
 

Quantitatively, we show the results of our ten 

game series below.  

 

Game 

Number 

Monte 

Carlo 

Score 

Alpha 

Beta 

Score 

Starting 

Player 

1 20 29 AB 

2 5 37 MC 

3 15 34 MC 

4 18 29 AB 

5 14 35 AB 

6 17 30 MC 

7 0 49 AB 

8 10 38 MC 

9 14 35 MC 

10 13 36 AB 

Table 1: Monte-Carlo vs Alpha-Beta 



Note that Alpha-Beta won every single game, 

regardless of playing first or second. This 

supports our hypothesis that tree-search 

strategies will outperform the state-of-the-art 

Monte-Carlo on small boards. 

 

There is another interesting metric that isn’t 

contained in the table – the average amount of 

time it takes each algorithm to make a move. 

This was impossible to quantify given our 

experimental setup, since we rely on an internet 

based client-server program to host the game 

and provide rules enforcement, and therefore our 

speed is affected by a number of factors 

including internet latency and the amount of 

other people using the server at the same time. 

However, it is clear that Alpha-Beta is much 

faster than basic minimax, and Monte-Carlo is 

faster than both of them. We speculate that 

Monte-Carlo’s speed is the reason it is so 

popular in commercial applications. 

 

As a point of interest, we also perform favorably 

against amateur human opponents, but we omit 

the games played against internet strangers in 

this table, since we cannot be sure which policy 

they are using. 

 

Discussion 

 
The experimental evidence we collected 

supports our hypothesis that tree-search methods 

would beat Monte-Carlo in a game of Go played 

on a small (7x7) board. While we didn’t develop 

any particular novel algorithms for this project, 

we were able to implement several different 

strategies and verify their relative merits. For 

example, Alpha-Beta’s 6 ply look ahead gives it 

an enormous advantage in the late game where a 

single move can change the game dramatically. 

It is also more likely to make plays that will lead 

to the capture of an opponent’s stone, and more 

defensive in protecting its own stones. Monte-

Carlo, on the other hand, is more likely to play 

the center of the board, and makes its moves 

more quickly. 

 

We also learned the importance of a good 

heuristic function for pruning the tree-search. A 

good heuristic can save a lot of time, especially 

in the beginning of the game when most moves 

are roughly equivalent score-wise. The heuristic 

also heavily impacts the branching factor, as an 

Alpha-Beta tree with an optimal heuristic has a 

branching factor of sqrt(boardSize) and similar 

tree with a very poor heuristic has a branching 

factor of boardSize. The average case for a 

random heuristic is ¾ boardSize. The heuristic 

used as the value function affects the number of 

states explored dramatically. 

 

For this reason, developing a “better” value 

function would be an excellent topic for future 

work. This may allow the autonomous agents to 

play on larger boards as well. At the present, the 

largest solved Go board we were able to verify 

in the literature is only 5x5, which has over 400 

billion legal states. In this respect, the fact that 

our agent was able to play reliably well on a 7x7 

board is already a significant contribution. (All 

autonomous Go playing programs on larger 

boards are forced to use Monte-Carlo.)  

However, we believe that tree-search could be 

possible even on these large boards with the 

right heuristic.  

 

Unfortunately, we underestimated the amount of 

scaffolding necessary to connect one agent to 

another online and we ran out of time before we 

could pursue this direction. Even so, preliminary 

results suggest that tree-search is more than 

capable for competing on small boards. In 

retrospect, we would have leaned more on 

premade tools so that we can get straight to the 

interesting stuff. 
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